Попадая в световедущую сердцевину, свет распространяется в ней за счет эффекта полного внутреннего отражения. Этот эффект имеет место при падении луча света на границу раздела двух сред из среды с большим показателем преломления n1 в среду с меньшим показателем n2, и наблюдается только до определенных значений угла падения Qкр, величина которого определяется различиями n1 и n2 (см. рис.1). Согласно законам оптики значение Qкр определяет соотношение cos Qкр = (n12-n22)2/n1. Лучи света, падающие на границу раздела n1/n2 под углами большими Qкр будут распространяться в световедущей сердцевине с очень малыми потерями, а лучи не удовлетворяющие этому условию - выходить в оболочку и быстро затухать. Обычно свет вводится в волокно через торец. Предельная величина угла падения луча света на торец волокна связана с критическим углом соотношением sin am = n1•cos Qкр = (n12 - n22)1/2 = (2n • dn)1/2, где n = (n1 + n2)/2, а dn = n1 - n2. Величина NA = sin am = (2n • dn)1/2 называется числовой апертурой волокна и определяет способность волокна собирать и передавать свет. Луч света, введенный в волокно под углом меньшим m, будет распространяться по всей длине волокна. Такой луч называется ведомой модой или просто модой. Как новая физическая среда для передачи информации оптическое волокно имеет ряд существенных преимуществ, по сравнению с другими, среди которых: 1. Широкая полоса частот (до 1014 Гц) и низкое затухание света в волокне (~ 0,1-0,2 дБ/км) обеспечивают передачу массивов информации с высокими скоростями и на большие расстояния (до сотен километров без регенерации сигнала). 2. Кварцевое стекло как среда передачи нечувствительно к электромагнитным полям. Поэтому волокно может прокладываться вместе с силовыми кабелями, без опасности возникновения наведенных помех и ошибок при передаче информации. 3. Оптическое волокно пожаровзрывобезопасно, в волоконно-оптических сетях обеспечивается гальваническая развязка между передающим и приемным оборудованием. 4. Оптическое волокно, как канал связи, имеет высокую степень защиты от прослушивания и несанкционированного съема информации. 5. Волоконно-оптические линии имеют значительно меньшие объем и массу в расчете на единицу передаваемой информации, чем любые другие; исходным сырьем для изготовления волокна является кремний, запасы которого на земле практически неограниченны. Существует два типа оптических волокон: многомодовые (ММ) и одномодовые (SM), отличающиеся диаметрами световедущей сердцевины. Многомодовое волокно, в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению. Диаметр сердцевины оптического волокна со ступенчатым профилем показателя преломления лежит в пределах от 100 до 200 мкм; значение показателя преломления n1 по всему поперечному сечению сердцевины постоянно и резко падает (ступенчатый) на границе с оболочкой (рис. 2).

В ступенчатом волокне могут возбуждаться и распространяться до тысячи мод с различным распределением по сечению и длине волокна. Моды имеют различные оптические пути и, следовательно, различные времена распространения по волокну, что приводит к уширению импульса света по мере его прохождения по волокну. Это явление называется межмодовой дисперсией и оно непосредственно влияет на скорость передачи информации по волокну. Область применения ступенчатых волокон короткие (до 1 км) линии связи со скоростями передачи информации до 100 Мбайт/с, рабочая длина волны излучения, как правило, 0,85 мкм. В многомодовом оптическом волокне с градиентным профилем показателя преломления значение показателя преломления плавно изменяется от центра к краям сердцевины по закону, близкому к n2(r) = n12(1 - 2d(r/a)2) , где а - радиус сердцевины; d = n1 - n2. (рис. 3). Благодаря этому число распространяющихся в сердцевине мод и различия в длинах оптических путей этих мод значительно уменьшаются и соответственно уменьшается и дисперсия.

Градиентное волокно в соответствии со стандартами имеет диаметр сердцевины 50 мкм и 62,5 мкм, диаметр оболочки 125 мкм. Оно применяется во внутриобъектовых линиях длиной до 5 км, со скоростями передачи до 100 Мбайт/c на длинах волн 0,85 мкм и 1,35 мкм. Стандартное одномодовое оптическое волокно имеет диаметр сердцевины 9 мкм и диаметр оболочки 125 мкм (рис. 4).

В этом волокне существует и распространяется только одна мода (точнее две вырожденные моды с ортогональными поляризациями), поэтому в нем отсутствует межмодовая дисперсия, что позволяет передавать сигналы на расстояние до 50 км со скоростью до 2,5 Гбит/с и выше без регенерации. Рабочие длины волн L1 = 1,31 мкм и L2 = 1,55 мкм. С развитием магистральных и локальных волоконно оптических сетей связи было освоено производство нескольких дополнительных типов одномодовых оптических волокон, отличающихся величиной затухания, его распределением по спектру и дисперсией. Распространение света в волоконном световоде характеризуется множеством параметров, самыми важными из которых являются потери на распространение и дисперсия в заданном спектральном диапазоне. Потери характеризуются величиной затухания световой волны на единицу длины волокна и измеряются в дБ/км. Дисперсия определяет степень уширения светового импульса по мере его прохождения по волокну. Существует три вида дисперсии в оптическом волокне: межмодовая, хроматическая и поляризационно-модовая. В зависимости от типа волокна в нем преобладает тот или иной вид дисперсии. В многомодовых волокнах определяющей является межмодовая дисперсия, которая обусловлена наличием большого числа распространяющихся мод и различиями времен их распространения по волокну. Межмодовая дисперсия не зависит от длины волны излучения, поэтому дисперсионные характеристики многомодовых оптических волокон оцениваются по информационной полосе пропускания в МГц•км. В стандартных одномодовых волокнах определяющей является хроматическая дисперсия, которая выражается в различии показателей преломления и, следовательно, в скоростях распространения излучения с различными длинами волн. Величина этой дисперсии зависит от типа источника излучения и измеряется в пс.
ITU-T (МСЭ-Т) регламентируют шесть типов ОМ ОВ, а именно:
- G.652 (тип SF — Standard Fiber) — стандартное, наиболее широко используемое ОМ ОВ с положением «0» дисперсии на длине волны 1310 нм; сегодня существуют четыре его модификации: G.652.A, G.652.B, G.652.C и G.652.D;
- G.653 (тип DSF — Dispersion Shifted Fiber) — ОМ ОВ со сдвигом «0» дисперсии на длину волны 1550 нм; основное ОМ ОВ, используемое в системах SDH, использующих одну несущую; сегодня существуют две его модификации: G.653.А и G.653.В;
- G.654 (тип CSF — Cut-off Shifted Fiber) — ОМ ОВ со сдвигом длины волны отсечки с 1260 на 1530 нм для увеличения диаметра модового поля (до 13,7 мкм максимум), т. е. площади поперечного сечения сердцевины; на практике используется редко, сегодня существуют четыре его модификации: G.654.A, G.654.B, G.654.C и G.654.E;
- G.655 (тип NZDSF — Non-Zero Dispersion Shifted Fiber) — ОМ ОВ со сдвигом «0» дисперсии в 3-е окно (1550 нм), но за пределы области 1530–1565 нм, где его дисперсия мала по величине и наклону; ОВ изготавливаются с симметричными положительными и отрицательными дисперсионными характеристиками, для использования схем с управляемой дисперсией; длина волны отсечки у них сдвинута с 1260 на 1450 нм; широко применяется в системах WDM, использующих несколько несущих в одном ОВ; сегодня существуют 5 его модификаций: G.655.A, G.655.B, G.655.C, G.655.D и G.655.Е;
- G.656 (тип NDFWT — Non-zero Dispersion Fiber for Wideband Transport) — ОВ, формально похожий на ОВ типа G.655, но имеющий малую по величине и наклону дисперсию в более широком диапазоне длин волн — 1460–1625 нм; предназначен для широкополосных транспортных сетей WDM и DWDM;
- G.657 (тип — Bending Loss Insensitive Fiber) — ОВ, формально похожий на стандартное ОВ типа G.652.D, но предназначенный для сетей доступа и локальных сетей с горизонтальной подсистемой, связывающей несколько зданий; его основная особенность — существенно сниженные потери при макроизгибах и уменьшенный допустимый радиус изгиба (до 7,5 мм минимум), облегчающие прокладку внутриобъектовых и локальных сетей; кроме того, данный тип ОВ имеет более жесткие механические допуски; сегодня существуют две его модификации: G.657.А и G.657.В.
Каталоги оптического волокна позволяет проектировщикам ВОЛС ориентироваться в типе и параметрах одномодовых ОВ, на которые производители ссылаются чаще всего по названию стандарта.
Основные характеристики ОМ волокон
- Тип волокна — один из 6 типов, описанных выше. Для ОМ ОВ с ненулевой смещенной дисперсией (NZDSF) знак «+» означает, что дисперсионный параметр D положителен, знак «–» — что он отрицателен, этот знак важен для систем, использующих управление дисперсией, в том числе и с помощью DCM — модулей компенсации дисперсии. Кроме этих типов ОВ, производители предлагают ОВ типа ZWPF (Zero Water Peak Fiber) — волокно с нулевым водяным пиком, разработанные для систем CWDM, которое может работать в полосе от 1270 до 1625 нм.
- Рабочие окна прозрачности — кроме обозначений окон указывается и более точный интервал, например 1530–1565 нм, если ОВ оптимизировано для работы именно в нем. Сначала под окнами понимались узкие области минимумов кривой поглощения света в ОВ в окрестности: 850 нм (1), 1310 нм (2) и 1550 нм (3). Сегодня 2-е окно — это область 1270–1325 нм, 3-е окно — 1528–1565 нм, 4-е окно — 1565–1625 нм, 5-е окно — 1325–1450 нм. Например, волокно AllWave компании OFS (и другие ОВ типа ZWP) может работать в четырех окнах: 2–5.
- Затухание дается как для фиксированных длин волн — 1310, 1383 нм (водяной пик затухания, вызванный гидроксильной группой OH), 1550 нм, так и в диапазонах внутри окон, что важно для прикидки возможности использования ОВ в системах WDM. Как правило, приводятся два значения (через разделительную черту): первое соответствует максимально возможной величине, второе — фактически наблюдаемой на практике (на него можно ориентироваться с большой долей вероятности).
- Прирост затухания приводится (при использовании в широком диапазоне температур) для двух диапазонов температур (–60 – 55 °С) или (–60 — 85 °С) через разделительную черту, если дано одно из них, то знак «–» означает отсутствие данных для другого диапазона. Аналогичный прирост может быть и от других факторов, например, при эксплуатации ОК в водной среде или от чрезмерно малого радиуса кривизны при частых изгибах ОВ и др.
- Длина волны отсечки — минимальная длина волны, при которой ОВ поддерживает распространение только одной моды излучения. Приводятся (через разделительную черту) оба значения: для сердцевины и кабеля в целом или одно из них (знак «–» означает отсутствие данных). Первое значение обычно выше второго, которое определяется в результате измерений и служит практическим ориентиром длины волны отсечки. Если кабель используется для передачи несущих с длинами волн ниже длины волны отсечки, то ОВ фактически становится многомодовым, а возникающие дополнительные моды могут привести к существенному увеличению дисперсии.
- Длина волны нулевой дисперсии приведена по стандарту либо оценена на основании других данных. Вместе с наклоном при нулевой дисперсии она дает возможность грубо оценить значение дисперсии для конкретной длины волны, используя интерполяционные формулы.
- Область ненулевой дисперсии приводится для ОМ ОВ, оптимизированного для работы с системами WDM в указанной области. Знание ее важно при оценке влияния так называемого четырёхволнового смешения (относящегося к нелинейным эффектам) на эти системы.
- Изменение дисперсионного параметра D, в З окне приводится для ОМ ОВ с ненулевой дисперсией и соответствует границам указанного окна. Знание D важно для расчета накопленной дисперсии на длине пролета (span) — участка передачи, перекрываемого одним оптическим усилителем. Ограничения на нее приводятся в спецификациях на системы WDM в рамках параметра, называемого конфигурацией системы, например, 4х33, 5х30, где первая цифра — число пролетов на одну секцию, а вторая — бюджет ОУ на пролет в дБ.
- Дисперсия PMD для протяженной линии — этот параметр дает статистическое значение PMD в кабеле. Данный параметр используется для более достоверной оценки накопленной (на длине секции) дисперсии PMD для высокоскоростных систем связи (10 Гбит/с и выше).
- Эффективная площадь светового поля — этот параметр вводится, как эквивалент площади сердцевины для систем DWDM. В них используются лазерные источники высокой интенсивности, что ведет к росту нелинейных эффектов. Для снижения плотности оптической мощности необходимо увеличивать эффективную площадь светового поля, что делается за счет оптимизации профиля показателя преломления (ПП). Например, в волокне LEAF (компании Corning) эта площадь повышена настолько, что дает прирост допустимой мощности источника излучения на 2 дБ (используемый профиль ПП — трезубец).
- Вид профиля показателя преломления — кроме прямоугольного профиля ПП, в волокнах типа NZDSF для формирования относительно плоской дисперсионной характеристики (с малой величиной дисперсии) используются специальные профили ПП. Наиболее широко используемые из них — трезубец и треугольник на пьедестале (ꓥ-профиль), формируемые при использовании нескольких оболочек с разным значением ПП.
- Радиус собственной кривизны волокна — параметр, влияющий на смещение центра волокна при укладке его для сварки в V-образную канавку (чем меньше радиус, тем больше смещение).
Ряд других параметров — механических, точностных и температурных — обычно отражен в меньшей степени.
Рекомендации по применению оптических волокон в системах связи
Раньше все волокна использовались в основном в системах магистральной связи с технологиями PDH, SDH и WDM. Сегодня они стали использоваться в сетях доступа — PON, FTTB, FTTH с технологиями Ethernet, IP, ATM и локальных сетях. Приводим краткую сводку рекомендаций, которые накопились в процессе использования в них ОВ:
- ММ ОВ используются сегодня только в локальных сетях и сетях доступа и практически не используются в сетях PDH, SDH и WDM, хотя раньше и использовались в сетях PDH, как правило, в окне 1310 нм.
- Волокна SF (рек. С.652) используются наиболее широко (хотя они самые старые и массовые типы ОВ, но они постоянно совершенствуются — например, SMF-28 Ultra компании Corning). За последние годы их фактическое затухание было уменьшено (до величин 0,17 дБ/км) и может соответствовать требованиям рек. G.654.
- SF G.652 последних модификаций фактически стали волокнами типа ZWP и могут быть использованы для любых применений, в том числе для систем CWDM и для высокоскоростных одноканальных систем SDH вплоть до скоростей 40 Гбит/с. Их единственный недостаток — большая хроматическая дисперсия (ХД) на длине волны 1550 нм (17–20 пс/нм/км), может быть устранен использованием модулей компенсации дисперсии DCM или же использованием метода управления дисперсией. Именно такое решение применяется не только для SDH, но и для WDM, когда используется старая кабельная сеть.
- Волокна DSF (рек. G.653) широко используются для систем SDH (STM-16 и выше). Однако, если в перспективе предстоит переход на системы WDM, то их использование нежелательно (ввиду ярко выраженного эффекта четырёхволнового смешения (ЧВС), т. к. нуль дисперсии лежит внутри рабочего диапазона систем WDM, облегчая возникновение ЧВС).
- Волокна CSF (рек. G.654), учитывая большую площадь сердцевины и малое затухание, предназначаются в основном для трансокеанских ВОЛС, где требуется использовать большой уровень входного сигнала для реализации секций большой длины. Таким является ОВ Vascade EX1000 компании Corning, разработанное для подводных ВОЛС без ОУ. Его данные: тип G.654C, затухание 0,16–0,17 дБ/км, дальность пролета до 310 км (при одном EDFA) и до 400 км (при тандеме EDFA-Raman).
- Волокна NZDSF (рек. G.655) оптимизированы для работы в системах WDM. Выбор конкретной марки ОВ при этом зависит от используемого диапазона длин волн, т. к. внутри него значение дисперсии не должно быть нулевым (для исключения ЧВС). В пределах выбранного диапазона оно должно быть одного знака и составлять не менее 2–4 пс/нм/км.
- Волокна NDFWT (рек. G.656) также предназначены для работы с WDM. Они позволяют увеличить разнос несущих и тем самым использовать более высокие скорости передачи, применяемые для мультиплексирования в системах WDM, однако, открытым остается вопрос о создании широкополосных ОУ.
- Волокна BLIF иногда используется обозначение BIF (рек. G.657) оптимизированы для работы в локальных сетях и для использования при внутриобъектовой проводке, поскольку при прокладке в пределах здания можно столкнуться с вынужденными макроизгибами по трассе волоконно-оптического кабеля.
- С точки зрения использования ОВ для среднескоростных систем SDH (до 2,5 Гбит/с включительно — STM-16), можно констатировать, что при одной несущей может быть использовано любое ОВ, удовлетворяющее по затуханию и накопленной дисперсии требованиям заказчика. Если предполагается впоследствии переходить к WDM, то можно применять любое ОВ, кроме DSF, используя при этом альтернативные технических решения: либо волокно SSMF + волокно DCF, либо волокно NZDSF с малым наклоном кривой D, либо чередование NZDSF+/NZDSF– (метод с управлением дисперсией) — конкретный выбор диктуется экономическими соображениями.
- С точки зрения использования ОВ для высокоскоростных систем SDH (10 Гбит/с и выше, т. е. на уровне STM-64, STM-256), можно констатировать, что при одной несущей может быть использовано любое ОВ, удовлетворяющее по затуханию, накопленной дисперсии и величине поляризационной модовой дисперсии — PMD (она должна быть не хуже 0,1–0,2 пс/км-1/2) или допуску на ее накопленное значение требованиям заказчика. Если предполагается впоследствии переходить на WDM, то главным остается требование по ограничению накопленной PMD, а в остальном соображения те же, что и в предыдущем пункте (наилучшим при этом будет использование метода с управлением дисперсией).
|